首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391389篇
  免费   34337篇
  国内免费   20930篇
电工技术   27070篇
技术理论   53篇
综合类   51878篇
化学工业   44280篇
金属工艺   15614篇
机械仪表   23809篇
建筑科学   53200篇
矿业工程   20384篇
能源动力   12146篇
轻工业   24516篇
水利工程   19313篇
石油天然气   16689篇
武器工业   4289篇
无线电   25250篇
一般工业技术   34603篇
冶金工业   20142篇
原子能技术   4910篇
自动化技术   48510篇
  2024年   642篇
  2023年   3860篇
  2022年   7471篇
  2021年   9332篇
  2020年   10013篇
  2019年   8500篇
  2018年   8090篇
  2017年   9911篇
  2016年   11666篇
  2015年   12720篇
  2014年   22552篇
  2013年   21034篇
  2012年   27645篇
  2011年   28840篇
  2010年   22735篇
  2009年   23629篇
  2008年   21920篇
  2007年   28220篇
  2006年   26045篇
  2005年   22463篇
  2004年   18967篇
  2003年   16815篇
  2002年   13994篇
  2001年   11677篇
  2000年   9834篇
  1999年   8134篇
  1998年   6186篇
  1997年   5431篇
  1996年   4899篇
  1995年   4344篇
  1994年   3795篇
  1993年   2811篇
  1992年   2480篇
  1991年   1797篇
  1990年   1569篇
  1989年   1424篇
  1988年   1122篇
  1987年   724篇
  1986年   570篇
  1985年   433篇
  1984年   406篇
  1983年   280篇
  1982年   268篇
  1981年   213篇
  1980年   163篇
  1979年   145篇
  1978年   79篇
  1977年   83篇
  1976年   67篇
  1975年   69篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
李发  向仲怀 《丝绸》2022,59(1):1-9
中国考古出土的蚕业实物及蚕的艺术形象比较丰富,蚕的艺术形象如蚕纹、陶蚕蛹、牙雕蚕、玉石蚕、铜蚕、金蚕等,可统称为"蚕的模拟形态"。对蚕的模拟形态的功用,已有的诸多解释都有待完善。研究表明,蚕的模拟形态或艺术形象表达的功用或为饰品,或为装饰图案,或有待进一步考究。但无论哪种功用,用"蚕"这一形象都蕴含了特有的用意。通过对中国古代生命观的考察,文章认为蚕的艺术形象折射出相应的中国古代哲学生命观,即中国古人追求的死而复生、生生不息、羽化成仙、长乐无极等观念。  相似文献   
42.
The development of efficient filters is an essential part of industrial machinery design, specifically to increase the lifespan of a machine. In the filter chamber design considered in this study, the magnetic material is placed along the horizontal surface of the filter chamber. The inside of the filter chamber is layered with a porous material to restrict the outflow of unwanted particles. This study aims to investigate the flow, pressure, and heat distribution in a dilating or contracting filter chamber with two outlets driven by injection through a permeable surface. The proposed model of the fluid dynamics within the filter chamber follows the conservation equations in the form of partial differential equations. The model equations are further reduced to a steady case through Lie's symmetry group of transformation. They are then solved using a multivariate spectral-based quasilinearization method on the Chebyshev–Gauss–Lobatto nodes. Insights and analyses of the thermophysical parameters that drive optimal outflow during the filtration process are provided through the graphs of the numerical solutions of the differential equations. We find, among other results, that expansion of the filter chamber leads to an overall decrease in internal pressure and an increase in heat distribution inside the filter chamber. The results also show that shrinking the filter chamber increases the internal momentum inside the filter, which leads to more outflow of filtrates.  相似文献   
43.
This article addresses an investigation of the entropy analysis of Williamson nanofluid flow in the presence of gyrotactic microorganisms by considering variable viscosity and thermal conductivity over a convectively heated bidirectionally stretchable surface. Heat and mass transfer phenomena have been incorporated by taking into account the thermal radiation, heat source or sink, viscous dissipation, Brownian motion, and thermophoretic effects. The representing equations are nonlinear coupled partial differential equations and these equations are shaped into a set of ordinary differential equations via a suitable similarity transformation. The arising set of ordinary differential equations was then worked out by adopting a well-known scheme, namely the shooting method along with the Runge-Kutta-Felberge integration technique. The effects of flow and heat transfer controlling parameters on the solution variables are depicted and analyzed through the graphical presentation. The survey finds that magnifying viscosity parameter, Weissenberg number representing the non-Newtonian Williamson parameter cause to retard the velocity field in both the directions and thermal conductivity parameter causes to reduce fluid temperature. The study also recognizes that enhancing magnetic parameters and thermal conductivity parameters slow down the heat transfer rate. The entropy production of the system is estimated through the Bejan number. It is noticeable that the Bejan number is eminently dependent on the heat generation parameter, thermal radiation parameter, viscosity parameter, thermal conductivity parameter, and Biot number. The skillful accomplishment of the present heat and mass transfer system is achieved through the exteriorized choice of the pertinent parameters.  相似文献   
44.
Having accurate information about the hydrogen solubility in hydrocarbon fuels and feedstocks is very important in petroleum refineries and coal processing plants. In the present work, extreme gradient boosting (XGBoost), multi-layer perceptron (MLP) trained with Levenberg–Marquardt (LM) algorithm, adaptive boosting support vector regression (AdaBoost?SVR), and a memory-efficient gradient boosting tree system on adaptive compact distributions (LiteMORT) as four novel machine learning methods were used for estimating the hydrogen solubility in hydrocarbon fuels. To achieve this goal, a database containing 445 experimental data of hydrogen solubilities in 17 various hydrocarbon fuels/feedstocks was collected in wide-spread ranges of operating pressures and temperatures. These hydrocarbon fuels include petroleum fractions, refinery products, coal liquids, bitumen, and shale oil. Input parameters of the models are temperature and pressure along with density at 20 °C, molecular weight, and weight percentage of carbon (C) and hydrogen (H) of hydrocarbon fuels. XGBoost showed the highest accuracy compared to the other models with an overall mean absolute percent relative error of 1.41% and coefficient of determination (R2) of 0.9998. Also, seven equations of state (EOSs) were used to predict hydrogen solubilities in hydrocarbon fuels. The 2- and 3-parameter Soave-Redlich-Kwong EOS rendered the best estimates for hydrogen solubilities among the EOSs. Moreover, sensitivity analysis indicated that pressure owns the highest influence on hydrogen solubilities in hydrocarbon fuels and then temperature and hydrogen weight percent of the hydrocarbon fuels are ranked, respectively. Finally, Leverage approach results exhibited that the XGBoost model could be well trusted to estimate the hydrogen solubility in hydrocarbon fuels.  相似文献   
45.
At present, as the demand for electricity increases in all sectors, there is an urgent need to introduce alternative renewable energy sources into modern energy systems. Renewable energy sources, which consist of solar (photovoltaic, PV), wind and hydro power, are key alternative sources of “green energy’’ energies, but it can also be used to produce “green” hydrogen. Thanks to scientific and technological progress, the cost of photovoltaic solar radiation converters is constantly decreasing at a high rate, which makes it possible to build solar power plants of sufficiently large capacity. In the coming decades, solar energy will become an incentive for the economic development of countries that have the maximum “solar” resource. The Republic of Tajikistan is one of these countries with a high potential for solar energy.The article presents an analysis of the resources and potential of solar energy in the Republic of Tajikistan. The study of electromagnetic transients in networks with photovoltaic solar power plants is performed. The main equations, simulation model and calculations of transients are presented, taking into account changes in voltage on DC buses. An algorithm for controlling the system of automatic control of output parameters is proposed. The analysis of dynamic and static modes in parallel operation of a solar power plant with the grid is carried out. A block diagram and computer model is constructed in the MATLAB package together with Simulink and Power System Blockset.  相似文献   
46.
Heteroatomic doping is an effective way to optimize the electronic structure of carbon nitride to boost photocatalytic performance. However, the extra introduced defects could result in the decrease of its crystallinity. In this work, crystalline K–I co-doped carbon nitride (K–I–CCN) was simply synthesized from molten salt ionthermal post-calcination in nitrogen atmosphere. Structure characterization results indicate that compared to K–CCN synthesized from conventional molten salt heat treatment in air, nitrogen heating atmosphere is more conductive for the formation of homogeneous pore structure of the catalyst, which has larger surface area and pore volume, while could repairing some defects and resulting in better polymerization crystallization. In addition, except the implanting of K, I doping is still retained after nitrogen heat treatment, thus forming K–I co-doping structure. Due to the positive charge effect of K–I co-doping, K–I–CCN has a narrower band gap, higher surface charge density and stronger charge transport, so it performs significantly enhanced photocatalytic H2 evolution activity from water splitting.  相似文献   
47.
48.
黄惠兰  文翔  李刚  汤维 《太阳能学报》2022,43(2):373-379
以H型垂直轴风力机及其内含圆柱形实体为研究对象,对NACA0018翼型的五叶片H型垂直轴风力机的气动性能进行数值模拟和实验验证。分析8种不同直径的内含圆柱体,在内含实体截面积占风轮迎风面积之比分别为21.2%、50.0%和76.9%时,风力机风能利用率的峰值分别下降8.04%、20.7%及74.3%。结果表明:随着内含实体直径的增大,风能利用率的峰值逐渐减小,开始较为缓慢,达到一定值时快速下降。小直径内含实体主要影响叶片在下风区的转矩,对风能利用率的影响较小,而大直径内含实体还会影响叶片在上风区的转矩,其风能利用率迅速减小。对于内含固定直径的实体,比如在现有建筑物外侧安装风力机时,其风轮半径的选择需综合考虑风能利用率和风力机的建造成本两方面的因素。研究结果可为建筑物与垂直轴风力机进行有效结合以提高风能的利用提供参考。  相似文献   
49.
In the present work it is found that the pyrotechnic composition VS-2 can be initiated with flash lamps IFC-500 and EVIS. VS-2 pyrotechnic composition contains 90% of mercury(Ⅱ) 5-hydrazinotetrazolate perchlorate and 10% of optically transparent copolymer of 2-methyl-5-vinyltetrazole and methacrylic acid (PVMT). We have found that the flash lamps make it possible to initiate combustion of VS-2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high, and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm-2 and 90 mg·cm-2, showing ignition delay times 10 μs and 3 μs, respectively. We also measured detonation velocities for VS-2 composition film charges, which were 4375-4505 m·s-1 (of the charge being surface mass 60 mg·cm-2) and 4221-4281 m·s-1 (of the charge being surface mass 90 mg·cm-2) and their blasting action on the aluminum plate. The depths of the normal shock wave imprints at the charge-barrier interface were 0.6-0.7 mm (for surface mass of the film charges 60 mg·cm-2) and 1.2-1.3 mm (for surface mass of the film charges 90 mg·cm-2).  相似文献   
50.
Classical Fourier's theory is well-known in continuum physics and thermal sciences. However, the primary drawback of this law is that it contradicts the principle of causality. To explore the thermal relaxation time characteristic, Cattaneo–Christov's theory is adopted thermally. In this regard, the features of magnetohydrodynamic (MHD) mixed convective flows of Casson fluids over an impermeable irregular sheet are revealed numerically. In addition, the resulting system of partial differential equations is altered via practical transformations into nonlinear ordinary differential equations. An advanced numerical algorithm is developed in this respect to get higher approximations for temperature and velocity fields, as well as their corresponding wall gradients. For validating our numerical code, the current outcomes are compared with the available literature results. Moreover, it is revealed that the velocity field is more prominent in the suction flow situation as compared with the injection flow case. It is also found that the Casson fluid is hastened in the case of lower yield stress. Larger values of thermal relaxation parameters create a lessening trend in the temperature distribution and its related boundary layer breadth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号